Archive

Archive for the ‘Security Innovation & Imagination’ Category

Wanna Be A Security Player? Deliver It In Software As A Service Layer…

January 9th, 2013 1 comment

As I continue to think about the opportunities that Software Defined Networking (SDN) and Network Function Virtualization (NFV) bring into focus, the capability to deliver security as a service layer is indeed exciting.

I wrote about how SDN and OpenFlow (as a functional example) and the security use cases provided by each will be a differentiating capability back in 2011: The Killer App For OpenFlow and SDN? SecurityOpenFlow & SDN – Looking forward to SDNS: Software Defined Network Security, and Back To The Future: Network Segmentation & More Moaning About Zoning.

Recent activity in the space has done nothing but reinforce this opinion.  My day job isn’t exactly lacking in excitement, either :)

As many networking vendors begin to bring their SDN solutions to market — whether in the form of networking equipment or controllers designed to interact with them — one of the missing strategic components is security.  This isn’t a new phenomenon, unfortunately, and as such, predictably there are also now startups entering this space and/or retooling from the virtualization space and stealthily advertising themselves as “SDN Security” companies :)

Like we’ve seen many times before, security is often described (confused?) as a “simple” or “atomic” service and so SDN networking solutions are designed with the thought that security will simply be “bolted on” after the fact and deployed not unlike a network service such as “load balancing.”  The old “we’ll just fire up some VMs and TAMO (Then a Miracle Occurs) we’ve got security!” scenario.  Or worse yet, we’ll develop some proprietary protocol or insertion architecture that will magically get traffic to and from physical security controls (witness the “U-TURN” or “horseshoe” L2/L3 solutions of yesteryear.)

The challenge is that much of Security today is still very topologically sensitive and depends upon classical networking constructs to be either physically or logically plumbed between the “outside” and the asset under protection, or it’s very platform dependent and lacks the ability to truly define a policy that travels with the workload regardless of the virtualization, underlay OR overlay solutions.

Depending upon the type of control, security is often operationalized across multiple layers using wildly different constructs, APIs and context in terms of policy and disposition depending upon it’s desired effect.

Virtualization has certainly evolved our thinking about how we should think differently about security mostly due to the dynamism and mobility that virtualization has introduced, but it’s still incredibly nascent in terms of exposed security capabilities in the platforms themselves.  It’s been almost 5 years since I started raging about how we need(ed) platform providers to give us capabilities that function across stacks so we’d have a fighting chance.  To date, not only do we have perhaps ONE vendor doing some of this, but we’ve seen the emergence of others who are maniacally focused on providing as little of it as possible.

If you think about what virtualization offers us today from a security perspective, we have the following general solution options:

  1. Hypervisor-based security solutions which may apply policy as a function of the virtual-NIC card of the workloads it protects.
  2. Extensions of virtual-networking (i.e. switching) solutions that enable traffic steering and some policy enforcement that often depend upon…
  3. Virtual Appliance-based security solutions that require manual or automated provisioning, orchestration and policy application in user space that may or may not utilize APIs exposed by the virtual networking layer or hypervisor

There are tradeoffs across each of these solutions; scale, performance, manageability, statefulness, platform dependencies, etc.  There simply aren’t many platforms that natively offer security capabilities as a function of service delivery that allows arbitrary service definition with consistent and uniform ways of describing the outcome of the policies at these various layers.  I covered this back in 2008 (it’s a shame nothing has really changed) in my Four Horsemen Of the Virtual Security Apocalypse presentation.

As I’ve complained for years, we still have 20 different ways of defining how to instantiate a five-tupule ACL as a basic firewall function.

Out of the Darkness…

The promise of SDN truly realized — the ability to separate the control, forwarding, management and services planes — and deploy security as a function of available service components across overlays and underlays, means we will be able to take advantage of any of these models so long as we have a way to programmatically interface with the various strata regardless of whether we provision at the physical, virtual or overlay virtual layer.

It’s truly exciting.  We’re seeing some real effort to enable true security service delivery.

When I think about how to categorize the intersection of “SDN” and “Security,” I think about it the same way I have with virtualization and Cloud:

  • Securing SDN (Securing the SDN components)
  • SDN Security Services (How do I take security and use SDN to deliver security as a service)
  • Security via SDN (What NEW security capabilities can be derived from SDN)

There are numerous opportunities with each of these categories to really make a difference to security in the coming years.

The notion that many of our network and security capabilities are becoming programmatic means we *really* need to focus on securing SDN solutions, especially given the potential for abuse given the separation of the various channels. (See: Software Defined Networking (In)Security: All Your Control Plane Are Belong To Us…)

Delivering security as a service via SDN holds enormous promise for reasons I’ve already articulated and gives us an amazing foundation upon which to start building solutions we can’t imagine today given the lack of dynamism in our security architecture and design patterns.

Finally, the first two elements give rise to allow us to do things we can’t even imagine with today’s traditional physical and even virtual solutions.

I’ll be starting to highlight really interesting solutions I find (and am able to talk about) over the next few months.

Security enabled by SDN is going to be huge.

More soon.

/Hoff

Related articles

Enhanced by Zemanta

Brood Parasitism: A Cuckoo Discussion Of Smart Device Insecurity By Way Of Robbing the NEST…

July 18th, 2012 No comments
English: Eastern Phoebe (Sayornis phoebe) nest...

(Photo credit: Wikipedia)

 

I’m doing some research, driven by recent groundswells of some awesome security activity focused on so-called “smart meters.”  Specifically, I am interested in the emerging interconnectedness, consumerization and prevalence of more generic smart devices and home automation systems and what that means from a security, privacy and safety perspective.

I jokingly referred to something like this way back in 2007…who knew it would be more reality than fiction.

You may think this is interesting.  You may think this is overhyped and boorish.  You may even think this is cuckoo…

Speaking of which, back to the title of the blog…

Brood parasitism is defined as:

A method of reproduction seen in birds that involves the laying of eggs in the nests of other birds. The eggs are left under the parantal care of the host parents. Brood parasitism may be occur between species (interspecific) or within a species (intraspecific) [About.com]

A great example is that of the female european Cuckoo which lays an egg that mimics that of a host species.  After hatching, the young Cuckcoo may actually dispose of the host egg by shoving it out of the nest with a genetically-engineered physical adaptation — a depression in its back.  One hatched, the forced-adoptive parent birds, tricked into thinking the hatchling is legitimate, cares for the imposter that may actually grow larger than they, and then struggle to keep up with its care and feeding.

What does this have to do with “smart device” security?

I’m a huge fan of my NEST thermostat. :) It’s a fantastic device which, using self-learning concepts, manages the heating and cooling of my house.  It does so by understanding how my family and I utilize the controls over time doing so in combination with knowing when we’re at home or we’re away.  It communicates with and allows control over my household temperature management over the Internet.  It also has an API <wink wink>  It uses an ARM Cortex A8 CPU and has both Wifi and Zigbee radios <wink wink>

…so it knows how I use power.  It knows how when I’m at home and when I’m not. It allows for remote, out-of-band, Internet connectivity.  I uses my Wifi network to communicate.  It will, I am sure, one day intercommunicate with OTHER devices on my network (which, btw, is *loaded* with other devices already)

So back to my cuckoo analog of brood parasitism and the bounty of “robbing the NEST…”

I am working on researching the potential for subverting the control plane for my NEST (amongst other devices) and using that to gain access to information regarding occupancy, usage, etc.  I have some ideas for how this information might be (mis)used.

Essentially, I’m calling the tool “Cuckoo” and it’s job is that of its nest-robbing namesake — to have it fed illegitimately and outgrow its surrogate trust model to do bad things™.

This will dovetail on work that has been done in the classical “smart meter” space such as what was presented at CCC in 2011 wherein the researchers were able to do things like identify what TV show someone was watching and what capabilities like that mean to privacy and safety.

If anyone would like to join in on the fun, let me know.

/Hoff

 

Enhanced by Zemanta

Six Degress Of Desperation: When Defense Becomes Offense…

July 15th, 2012 No comments
English: Defensive and offensive lines in Amer...

English: Defensive and offensive lines in American football (Photo credit: Wikipedia)

One cannot swing a dead cat without bumping into at least one expose in the mainstream media regarding how various nation states are engaged in what is described as “Cyberwar.”

The obligatory shots of darkened rooms filled with pimply-faced spooky characters basking in the green glow of command line sessions furiously typing are dosed with trademark interstitial fade-ins featuring the masks of Anonymous set amongst a backdrop of shots of smoky Syrian streets during the uprising,  power grids and nuclear power plants in lockdown replete with alarms and flashing lights accompanied by plunging stock-ticker animations laid over the trademark icons of financial trading floors.

Terms like Stuxnet, Zeus, and Flame have emerged from the obscure .DAT files of AV research labs and now occupy a prominent spot in the lexicon of popular culture…right along side the word “Hacker,” which now almost certainly brings with it only the negative connotation it has been (re)designed to impart.

In all of this “Cyberwar” we hear that the U.S. defense complex is woefully unprepared to deal with the sophistication, volume and severity of the attacks we are under on a daily basis.  Further, statistics from the Private Sector suggest that adversaries are becoming more aggressive, motivated, innovative, advanced,  and successful in their ability to attack what is basically described as basically undefended — nee’ undefendable — assets.

In all of this talk of “Cyberwar,” we were led to believe that the U.S. Government — despite hostile acts of “cyberaggression” from “enemies” foreign and domestic — never engaged in pre-emptive acts of Cyberwar.  We were led to believe that despite escalating cases of documented incursions across our critical infrastructure (Aurora, Titan Rain, etc.,) that our response was reactionary, limited in scope and reach and almost purely detective/forensic in nature.

It’s pretty clear that was a farce.

However, what’s interesting — besides the amazing geopolitical, cultural, socio-economic, sovereign,  financial and diplomatic issues that war of any sort brings — including “cyberwar” — is that even in the Private Sector, we’re still led to believe that we’re both unable, unwilling or forbidden to do anything but passively respond to attack.

There are some very good reasons for that argument, and some which need further debate.

Advanced adversaries are often innovative and unconstrained in their attack methodologies yet defenders remain firmly rooted in the classical OODA-fueled loops of the past where the A, “act,” generally includes some convoluted mixture of detection, incident response and cleanup…which is often followed up with a second dose when the next attack occurs.

As such, “Defenders” need better definitions of what “defense” means and how a silent discard from a firewall, a TCP RST from an IPS or a blip from Bro is simply not enough.  What I’m talking about here is what defensive linemen look to do when squared up across from their offensive linemen opponents — not to just hold the line to prevent further down-field penetration, but to sack the quarterback or better yet, cause a fumble or error and intercept a pass to culminate in running one in for points to their advantage.

That’s a big difference between holding till fourth down and hoping the offense can manage to not suffer the same fate from the opposition.

That implies there’s a difference between “winning” and “not losing,” with arbitrary values of the latter.

Put simply, it means we should employ methods that make it more and more difficult, costly, timely and non-automated for the attacker to carry out his/her mission…[more] active defense.

I’ve written about this before in 2009 “Incomplete Thought: Offensive Computing – The Empire Strikes Back” wherein I asked people’s opinion on both their response to and definition of “offensive security.”  This was a poor term…so I was delighted when I found my buddy Rich Mogull had taken the time to clarify vocabulary around this issue in his blog titled: “Thoughts on Active Defense, Intrusion Deception, and Counterstrikes.

Rich wrote:

…Here are some possible definitions we can work with:

  • Active defense: Altering your environment and system responses dynamically based on the activity of potential attackers, to both frustrate attacks and more definitively identify actual attacks. Try to tie up the attacker and gain more information on them without engaging in offensive attacks yourself. A rudimentary example is throwing up an extra verification page when someone tries to leave potential blog spam, all the way up to tools like Mykonos that deliberately screw with attackers to waste their time and reduce potential false positives.
  • Intrusion deception: Pollute your environment with false information designed to frustrate attackers. You can also instrument these systems/datum to identify attacks. DataSoft Nova is an example of this. Active defense engages with attackers, while intrusion deception can also be more passive.
  • Honeypots & tripwires: Purely passive (and static) tools with false information designed to entice and identify an attacker.
  • Counterstrike: Attack the attacker by engaging in offensive activity that extends beyond your perimeter.

These aren’t exclusive – Mykonos also uses intrusion deception, while Nova can also use active defense. The core idea is to leave things for attackers to touch, and instrument them so you can identify the intruders. Except for counterattacks, which move outside your perimeter and are legally risky.

I think that we’re seeing the re-emergence of technology that wasn’t ready for primetime now become more prominent in consideration when folks refresh their toolchests looking for answers to problems that “passive response” offers.  It’s important to understand that tools like these — in isolation — won’t solve many complex attacks, nor are they a silver bullet, but understanding that we’re not limited to cleanup is important.

The language of “active defense,” like Rich’s above, is being spoken more and more.

Traditional networking and security companies such as Juniper* are acquiring upstarts like Mykonos Software in this space.  Mykonos’ mission is to “…change the economics of hacking…by making the attack surface variable and inserting deceptive detection points into the web application…mak[ing] hacking a website more time consuming, tedious and costly to an attacker. Because the web application is no longer passive, it also makes attacks more difficult.”

VC’s like Kleiner Perkins are funding companies whose operating premise is a more active “response” such as the in-stealth company “Shape Security” that expects to “…change the web security paradigm by shifting costs from defenders to hackers.”

Or, as Rich defined above, the notion of “counterstrike” outside one’s “perimeter” is beginning to garner open discussion now that we’ve seen what’s possible in the wild.

In fact, check out the abstract at Defcon 20 from Shawn Henry of newly-unstealthed company “Crowdstrike,” titled “Changing the Security Paradigm: Taking Back Your Network and Bringing Pain to the Adversary:

The threat to our networks is increasing at an unprecedented rate. The hostile environment we operate in has rendered traditional security strategies obsolete. Adversary advances require changes in the way we operate, and “offense” changes the game.

Shawn Henry Prior to joining CrowdStrike, Henry was with the FBI for 24 years, most recently as Executive Assistant Director, where he was responsible for all FBI criminal investigations, cyber investigations, and international operations worldwide.

If you look at Mr. Henry’s credentials, it’s clear where the motivation and customer base are likely to flow.

Without turning this little highlight into a major opus — because when discussing this topic it’s quite easy to do so given the definition and implications of “active defense,”– I hope this has scratched an itch and you’ll spend more time investigating this fascinating topic.

I’m convinced we will see more and more as the cybersword rattling continues.

Have you investigated technology solutions that offer more “active defense?”

/Hoff

* Full disclosure: I work for Juniper Networks who recently acquired Mykonos Software mentioned above.  I hold a position in, and enjoy a salary from, Juniper Networks, Inc. ;)

Enhanced by Zemanta

Elemental: Leveraging Virtualization Technology For More Resilient & Survivable Systems

June 21st, 2012 Comments off

Yesterday saw the successful launch of Bromium at Gigamon’s Structure conference in San Francisco.

I was privileged to spend some stage time with Stacey Higginbotham and Simon Crosby (co-founder, CTO, mentor and good friend) on stage after Simon’s big reveal of Bromium‘s operating model and technology approach.

While product specifics weren’t disclosed, we spent some time chatting about Bromium’s approach to solving a particularly tough set of security challenges with a focus on realistic outcomes given the advanced adversaries and attack methodologies in use today.

At the heart of our discussion* was the notion that in many cases one cannot detect let alone prevent specific types of attacks and this requires a new way of containing the impact of exploiting vulnerabilities (known or otherwise) that are as much targeting the human factor as they are weaknesses in underlying operating systems and application technologies.

I think Kurt Marko did a good job summarizing Bromium in his article here, so if you’re interested in learning more check it out. I can tell you that as a technology advisor to Bromium and someone who is using the technology preview, it lives up to the hype and gives me hope that we’ll see even more novel approaches of usable security leveraging technology like this.  More will be revealed as time goes on.

That said, with productization details purposely left vague, Bromium’s leveraged implementation of Intel’s VT technology and its “microvisor” approach brought about comments yesterday from many folks that reminded them of what they called “similar approaches” (however right/wrong they may be) to use virtualization technology and/or “sandboxing” to provide more “secure” systems.  I recall the following in passing conversation yesterday:

  • Determina (VMware acquired)
  • Green Borders (Google acquired)
  • Trusteer
  • Invincea
  • DeepSafe (Intel/McAfee)
  • Intel TXT w/MLE & hypervisors
  • Self Cleansing Intrusion Tolerance (SCIT)
  • PrivateCore (Newly launched by Oded Horovitz)
  • etc…

I don’t think Simon would argue that the underlying approach of utilizing virtualization for security (even for an “endpoint” application) is new, but the approach toward making it invisible and transparent from a user experience perspective certainly is.  Operational simplicity and not making security the user’s problem is a beautiful thing.

Here is a video of Simon and my session “Secure Everything.

What’s truly of interest to me — and based on what Simon said yesterday — the application of this approach could be just at home in a “server,” cloud or mobile application as it is on a classical desktop environment.  There are certainly dependencies (such as VT) today, but the notion that we can leverage virtualization for better resilience, survivability and assurance for more “trustworthy” systems is exciting.

I for one am very excited to see how we’re progressing from “bolt on” to more integrated approaches in our security models. This will bear fruit as we become more platform and application-centric in our approach to security, allowing us to leverage fundamentally “elemental” security components to allow for more meaningfully trustworthy computing.

/Hoff

* The range of topics was rather hysterical; from the Byzantine General’s problem to K/T Boundary extinction-class events to the Mexican/U.S. border fence, it was chock full of analogs ;)

 

Enhanced by Zemanta

On Security Conference Themes: Offense *Versus* Defense – Or, Can You Code?

November 22nd, 2010 7 comments

This morning’s dialog on Twitter from @wmremes and @singe reminded me of something that’s been bouncing around in my head for some time.

Wim blogged about a tweet Jeff Moss made regarding Black Hat DC in which he suggested CFP submissions should focus on offense (versus defense.)

Black Hat (and Defcon) have long focused on presentations which highlight novel emerging attacks.  There are generally not a lot of high-profile “defensive” presentations/talks because for the most part, they’re just not sexy, generally they involve hard work/cultural realignment and the reality that as hard as we try, attackers will always out-innovate and out-pace defenders.

More realistically, offense is sexy and offense sells — and it often sells defense.  That’s why vendors sponsor those shows in the first place.

Along these lines, one will notice that within our industry, the defining criterion for the attack versus defend talks and those that give them, is one’s ability to write code and produce tools that demonstrate the vulnerability via exploit.  Conceptual vulnerabilities paired with non-existent exploits are generally thought of as fodder for academia.  Only when a tool that weaponizes an attack shows up do people pay attention.

Zero days rule by definition. There’s no analog on the defensive side unless you buy into marketing like “…ahead of the threat.” *cough* Defense for offense that doesn’t exist generally doesn’t get the majority of the funding ;)

So it’s no wonder that security “rockstars” in our industry are generally those who produce attack/offensive code which illustrate how a vector can be exploited.  It’s tangible.  It’s demonstrable.  It’s sexy.

On the other hand, most defenders are reconciled to using tools that others wrote — or become specialists in the integration of them — in order to parlay some advantage over the ever-increasing wares of the former.

Think of those folks who represent the security industry in terms of mindshare and get the most amount of press.  Overwhelmingly it’s those “hax0rs” who write cool tools — tools that are more offensive in nature, even if they produce results oriented toward allowing practitioners to defend better (or at least that’s how they’re sold.)  That said, there are also some folks who *do* code and *do* create things that are defensive in nature.

I believe the answer lies in balance; we need flashy exploits (no matter how impractical/irrelevant they may be to a large amount of the population) to drive awareness.  We also need  more practitioner/governance talks to give people platforms upon which they can start to architect solutions.  We need more defenders to be able to write code.

Perhaps that’s what Richard Bejtlich meant when he tweeted: “Real security is built, not bought.”  That’s an interesting statement on lots of fronts. I’m selfishly taking Richard’s statement out of context to support my point, so hopefully he’ll forgive me.

That said, I don’t write code.  More specifically, I don’t write code well.  I have hundreds of ideas of things I’d like to do but can’t bridge the gap between ideation and proof-of-concept because I can’t write code.

This is why I often “invent” scenarios I find plausible, talk about them, and then get people thinking about how we would defend against them — usually in the vacuum of either offensive or defensive tools being available, or at least realized.

Sometimes there aren’t good answers.

I hope we focus on this balance more at shows like Black Hat — I’m lucky enough to get to present my “research” there despite it being defensive in nature but we need more defensive tools and talks to make this a reality.

/Hoff

Enhanced by Zemanta

The Four Horsemen Of the Virtualization (and Cloud) Security Apocalypse…

April 25th, 2010 No comments

I just stumbled upon this YouTube video (link here, embedded below) interview I did right after my talk at Blackhat 2008 titled “The 4 Horsemen of the Virtualization Security Apocalypse (PDF)” [There’s a better narrative to the PDF that explains the 4 Horsemen here.]

I found it interesting because while it was rather “new” and interesting back then, if you ‘s/virtualization/cloud‘ especially from the perspective of heavily virtualized or cloud computing environments, it’s even more relevant today!  Virtualization and the abstraction it brings to network architecture, design and security makes for interesting challenges.  Not much has changed in two years, sadly.

We need better networking, security and governance capabilities! ;)

Same as it ever was.

/Hoff

Reblog this post [with Zemanta]

Chattin’ With the Boss: “Securing the Network” (Waiting For the Jet Pack)

March 7th, 2010 8 comments

At the RSA security conference last week I spent some time with Tom Gillis on a live uStream video titled “Securing the Network.”

Tom happens to be (as he points out during a rather funny interlude) my boss’ boss — he’s the VP and GM of Cisco‘s STBU (Security Technology Business Unit.)

It’s an interesting discussion (albeit with some self-serving Cisco tidbits) surrounding how collaboration, cloud, mobility, virtualization, video, the consumerizaton of IT and, um, jet packs are changing the network and how we secure it.

Direct link here.

Embedded below:

Reblog this post [with Zemanta]

To Achieve True Cloud (X/Z)en, One Must Leverage Introspection

January 6th, 2010 No comments

Back in October 2008, I wrote a post detailing efforts around the Xen community to create a standard security introspection API (Xen.Org Launches Community Project To Bring VM Introspection to Xen:)

The Xen Introspection Project is a community effort within Xen.org to leverage the existing research presented above with other work not yet public to create a standard API specification and methodology for virtual machine introspection.

That blog was focused on introspection for virtualization proper but since many of the larger cloud providers utilize Xen virtualization as an underpinning of their service architecture and as an industry we’re suffering from a lack of visibility and deployable security capabilities, the relevance of VM and VMM introspection to cloud computing is quite relevant.

I thought I’d double around and see where we are.

It looks as though there’s been quite a bit of recent activity from the folks at Georgia Tech (XenAccess Project) and the University of Alaska at Fairbanks (Virtual Introspection for Xen) referenced in my previous blog.  The vCloud API proffered via the DMTF seems to also leverage (at least some of) the VMsafe API capabilities present in VMware‘s vSphere virtualization platform.

While details are, for obvious reasons sketchy, I am encouraged in speaking to representatives from a few cloud providers who are keenly interested in including these capabilities in their offerings.  Wouldn’t that be cool?

Adoption and inclusion of introspection capabilities will overcome some of the inherent security and visibility limitations we face in highly-virtualized multi-tenant environments due to networking constraints for integrating security functionality that I wrote about here.

I plan a follow-on blog in more detail once I finish some interviews.

/Hoff

Reblog this post [with Zemanta]

Most CIO’s Not Sold On Cloud? Good, They Shouldn’t Be…

June 7th, 2009 13 comments

I find it amusing that there is so much drama surrounding the notion of Cloud adoption.

There are those who paint Cloud as the savior of today’s IT great unwashed and others who claim it’s simply hype and not ready for prime time.

They’re both right and Cloud adoption is exactly where it should be today.

Here’s a great illustration: “Cloud or Fog? Two-Thirds of UK CIOs and CFOs Not Yet Sold on Cloud“:

Sixty-seven per cent of Chief Information Officers and Chief Financial Officers in UK enterprises say they are either not planning to adopt cloud computing (35 per cent) or are unsure (32 per cent) of whether their company will adopt cloud computing during the next two years, according to a major new report from managed hosting (http://www.ntteuropeonline.com/) specialists NTT Europe Online.

Whose perspective you share comes down to well-established market dynamics relating to technology adoption and should not come as a surprise to anyone.

One of the best-known examples of this can be visualized a by a graphical representation of what Geoffrey Moore wrote about it in his book “Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream Customers“:

techadoptioncurve

Because I’m lazy, I’ll just refer you to the Wikipedia entry which describes “the Chasm” and the technology adoption lifecycle:

In Crossing the Chasm, Moore begins with the diffusion of innovations theory from Everett Rogers, and argues there is a chasm between the early adopters of the product (the technology enthusiasts and visionaries) and the early majority (the pragmatists). Moore believes visionaries and pragmatists have very different expectations, and he attempts to explore those differences and suggest techniques to successfully cross the “chasm,” including choosing a target market, understanding the whole product concept, positioning the product, building a marketing strategy, choosing the most appropriate distribution channel and pricing.

Crossing the Chasm is closely related to the Technology adoption lifecycle where five main segments are recognized; innovators, early adopters, early majority, late majority and laggards. According to Moore, the marketer should focus on one group of customers at a time, using each group as a base for marketing to the next group. The most difficult step is making the transition between visionaries (early adopters) and pragmatists (early majority). This is the chasm that he refers to. If a successful firm can create a bandwagon effect in which the momentum builds and the product becomes a de facto standard. However, Moore’s theories are only applicable for disruptive or discontinuous innovations. Adoption of continuous innovations (that do not force a significant change of behavior by the customer) are still best described by the original Technology adoption lifecycle. Confusion between continuous and discontinuous innovation is a leading cause of failure for high tech products.

Cloud is firmly entrenched in the Chasm, clawing its way out as the market matures*.

It will, over the next 18-24 months by my estimates arrive at the early majority phase.

Those who are today evangelizing Cloud Computing are the “technology enthusiasts” and “visionaries” in the “innovator” and “early adopter” phases respectively.  If you look at the article I quoted at the top of the blog, CIO’s are generally NOT innovators or early adopters, so…

So don’t be put off or overly excited when you see hyperbolic references to Cloud adoption because depending upon who you are and who you’re talking about, you’ll likely always get a different perspective for completely natural reasons.

/Hoff

* To be clear, I wholeheartedly agree with James Urquhart that “Cloud” is not a technology, it’s an operational model. So as not to confuse people, within the context of the “technology adoption curve” above you can likewise see how “model” or “paradigm” works, also.  It doesn’t really have to be limited to a pure technology.

Cloud Computing: Invented By Criminals, Secured By ???

November 3rd, 2008 10 comments

I was reading Reuven Cohen's "Elastic Vapor: Life In the Cloud Blog" yesterday and he wrote an interesting piece on what is being coined "Fraud as a Service."  Basically, Reuven describes the rise of botnets as the origin of "cloud" based service utilities as chronicled from Uri Rivner's talk at RSA Europe:

I hate to tell you this, it wasn't Amazon, IBM or even Sun who invented
cloud computing. It was criminal technologists, mostly from eastern
Europe who did. Looking back to the late 90's and the use of
decentralized "warez" darknets. These original private "clouds" are the
first true cloud computing infrastructures seen in the wild. Even way
back then the criminal syndicates had developed "service oriented
architectures" and federated id systems including advanced encryption.
It has taken more then 10 years before we actually started to see this
type of sophisticated decentralization to start being adopted by
traditional enterprises
.

The one sentence that really clicked for me was the following:

In this new world order, cloud computing will not just be a requirement for scaling your data center but also protecting it.

Amen. 

One of the obvious benefits of cloud computing is the distribution of applications, services and information.  The natural by-product of this is additional resiliency from operational downtime caused by error or malicious activity.

This benefit is a also a forcing function; it will require new security methodologies and technology to allow the security (policies) to travel with the applications and data as well as enforce it.

I wrote about this concept back in 2007 as part of my predictions for 2008 and highlighted it again in a post titled: "Thinning the Herd and Chlorinating the Malware Gene Pool" based on some posts by Andy Jaquith:

Grid and distributed utility computing models will start to creep into security
A
really interesting by-product of the "cloud compute" model is that as
data, storage, networking, processing, etc. get distributed, so shall
security.  In the grid model, one doesn't care where the actions take
place so long as service levels are met and the experiential and
business requirements are delivered.  Security should be thought of in
exactly the same way. 

The notion that you can point to a
physical box and say it performs function 'X' is so last Tuesday.
Virtualization already tells us this.  So, imagine if your security
processing isn't performed by a monolithic appliance but instead is
contributed to in a self-organizing fashion wherein the entire
ecosystem (network, hosts, platforms, etc.) all contribute in the
identification of threats and vulnerabilities as well as function to
contain, quarantine and remediate policy exceptions.

Sort
of sounds like that "self-defending network" schpiel, but not focused
on the network and with common telemetry and distributed processing of
the problem.
Check out Red Lambda's cGrid technology for an interesting view of this model.

This
basically means that we should distribute the sampling, detection and
prevention functions across the entire networked ecosystem, not just to
dedicated security appliances; each of the end nodes should communicate
using a standard signaling and telemetry protocol so that common
threat, vulnerability and effective disposition can be communicated up
and downstream to one another and one or more management facilities.

It will be interesting to watch companies, established and emerging, grapple with this new world.

/Hoff