
#RSAC

SESSION ID:

VP, Security CTO 
Juniper Networks 
@Beaker

Rich Mogull
Analyst and Chief Executive Officer 
Securosis, LLC
@rmogull

CSV-T07R

Christofer Hoff

Something Awesome on Cloud
and Containers

#RSAC
The following is an excerpt
from the presentation…
skipping to the bits on
Containers

#RSACContainers & Why They
Matter

#RSAC

PacketFilter

What are Containers? And LXC?
! “Containers” have existed in many forms for years: FreeBSD Jails, OpenVZ,

Solaris Zones, and LXC for example.
! LXC (Linux Containers) is a userspace interface for the Linux kernel

containment features to enable multiple isolated Linux processes to co-exist
on a single Linux host
! “LXC containers are often considered as something in the middle

between a chroot and a full fledged virtual machine. The goal  
of LXC is to create an environment as close as possible to a  
standard Linux installation but without the need for a separate 
kernel.“

! This is enabled by the use of two Linux kernel process resource
management solutions:
! Cgroups (control groups) are a resource management solution providing a

generic process-grouping framework which limits and prioritizes system
resources (CPU, memory, I/O, network, etc.)

! Namespaces allow for lightweight process virtualization and enables processes
to have different views of the system (mnt, pid, net, pic, uts, user)

4

#RSAC

PacketFilter

Comparing Virtual Machines…

! Virtual Machines (VMs) are best used to emulate
and allocate chunks of hardware resources.

! The isolation enabled by hypervisors generally
represent less of an attack surface than exposing
the entire host OS to the VMs themselves and
provides an abstracted/protected layer

! In the case of a Type-1 hypervisor, there is no
underlying host OS

! Each VM includes not only the application - which
may be only 10s of MB - and the necessary binaries
and libraries, but also an entire guest operating
system - which may entail many gigabytes of
storage and must be patched independently

5

Hardware  
(Compute, Networking, Storage)

Host Operating System

Hypervisor

Guest

Bins/

App/

Guest

Bins/

App/

Guest

Bins/

App/

Vi
rtu

al
 M

ac
hi

ne

#RSAC

PacketFilter

…and Containers?

6

! Containers operate at the process level,
which makes them very lightweight and
perfect as a unit of software delivery.

! A container comprises just the application
and its dependencies. It runs as an
isolated process in userspace on the host
operating system, sharing the kernel with
other containers.

! Thus, it enjoys many of the resource
isolation and allocation benefits of VMs but
is much more portable and efficient.

Hardware  
(Compute, Networking, Storage)

Host Operating System

Container “Engine”

Bins/

App/

Bins/Libs

App/Proc 
B

App/Proc 
C

C
on

ta
in

er

#RSAC

PacketFilter

So What Is Docker? [non-technical]

! Docker is an open platform for developers and sysadmins to
build, ship, and run distributed applications.

! Consisting of Docker Engine, a portable, lightweight runtime
and packaging tool, and Docker Hub, a cloud service for
sharing applications and automating workflows, Docker
enables apps to be quickly assembled from components and
eliminates the friction between development, QA, and
production environments.

! Docker is evolving into a platform that includes tools such as
Machine, Swarm and Compose to enable simpler, integrated
docker engine deployment, clustering, and distributed multi-
application orchestration

7

#RSAC

PacketFilter

What Is Docker [more technical]
! Docker is an open-source project written in Go, that automates the

deployment of applications inside software containers, by providing
an additional layer of abstraction and automation of operating-
system-level virtualization on Linux.

! Docker implements a high-level API to provide lightweight containers
that run processes in isolation, building on top of facilities provided
by the Linux kernel (primarily cgroups and namespaces)

! A Docker container does not require or include a separate operating
system. It relies on the kernel's functionality and uses resource
isolation (CPU, memory, block I/O, network, etc.) and separate
namespaces to isolate the application's view of the operating
system.

! Docker accesses the Linux kernel's virtualization features either
directly through the provided libcontainer library or indirectly via
libvirt, LXC or systemd-nspawn.

! Libcontainer enables containers to manipulate Linux namespaces,
control groups, capabilities, AppArmor security profiles, network
interfaces and firewalling rules in a consistent and predictable way.

8

Linux

 

libvirtlxcsystemd
-

cgroups

capabilities
namespaces

selinux
apparmor

Execdriver

libcontaine
r

netfilter

netlink

#RSAC

PacketFilter

Are Containers “Secure?”

9

That is the wrong
question.

#RSAC

PacketFilter

So? TL;DR…

10

! As you will see, to adequately secure
environments that utilize containers, you will
be required to know more about the internals
and hardening of the underlying host OS to
ensure the integrity and security of said
platforms more than you might with a
hypervisor and VMs.

! Or you should/can find a PaaS/Container
management solution that includes security
capabilities so you don’t have to.

! Or you should/can just “give up” and run your
containers within VMs…

#RSAC

PacketFilter

4 Dimensions of Container Security

1. Underlying Host’s Linux distribution kernel and its support for hardening,
namespaces, cgroups and capability mapping including capabilities and
what you do to harden the OS

2. The Container platform layer/engine & APIs: e.g. LXC or Libcontainer
3. Security of the access to the control plane of the host OS, the container

engine, scheduler(s) and application deployment platform components
4. Security of the process(es) within the Container 

Related: The grouping of containers into trust “zones” (logical/physical) and
the networking capabilities to do so (i.e. br0 interfaces insufficient)

11

#RSAC

PacketFilter

But First, A Selfie…

Some Important Questions:
1. Do you run a Linux OS in production?
2. Do you allow developers to run processes atop Linux?
3. Do you allow multiple processes per host?
4. Do you allow processes running atop linux to do so as root?
5. Do you know what ‘setenforce 1’ means and where you

would implement it and why?
6. How do you define a security boundary?

12

#RSAC

PacketFilter

If the vessel isn’t secure, how can the
containers be?

13

#RSAC

PacketFilter

“Containers Don’t Contain” & “Tupperware
Don’t Tupper”

! Run Docker Engine with AppArmor or
SELinux atop a GRSEC kernel to provide
containment where isolation is
appropriately scoped

! Don’t run untrusted processes with root
privileges & enable user namespaces

! Map groups of mutually-trusted containers
to separate machines; and

! If you really, really care about isolation and
reducing attack surface, run containers in
VMs or one container per machine…

14

#RSAC

PacketFilter

If your security sucks now, you will be pleasantly surprised by
the lack of change when you move to Containers

15

The Golden Rule of Containers

#RSAC

Applying This Knowledge

#RSAC

PacketFilter

Apply Slide

! Return to your host-based security fundamentals that you thought
you could get rid of because of Cloud…

…which you never did because you still have to armor your guest OS and apps
anyway, right? Right!?

! Leverage DevOps and automation so that security is integrated
(Cloud and Containers) into your least common denominator and
per-unit of deployment (bare metal, VM, Container, Micro-service…)

! Don’t try this sober.

17

