
SESSION ID:

Rich Mogull

Dueling Banjos - Cloud vs. Enterprise Security:
Using Automation and (Sec)DevOps NOW

CSV-W02

Hoff
Analyst and CEO 
Securosis 
@rmogull
rmogull@securosis.com

VP Strategy 
Juniper Networks
@Beaker
choff@juniper.net

mailto:rmogull@securosis.com
mailto:choff@juniper.net

#RSAC

What We Are Going To Discuss

u Virtualization
u Cloud Computing
u Open Source
u Security Toolsets and Tooling
u Security APIs and Programmatic Operations
u Automation
u Software Defined Security, Compliance & Incident Response
u [Sec]DevOps

!2

#RSAC

What We Are NOT Going To Discuss [In Detail]

u Developer-centric Software Development Life Cycle
u Vulnerability Assessment
u Code Analysis
u QA/Regression/Unit testing
u Application Language-specific Security
u Implementation specifics of continuous integration/continuous delivery
u …except…

!3

#RSAC

Security Says: “ENGLISH…Do You Speak It!?”

!4

✤ Python

✤ Ruby

✤ node.js

✤ Erlang

✤ Scala

✤ Clojure

✤ Groovy

The path of the righteous security man is beset on all sides by the inequities of the selfish and the tyranny of evil developers. Blessed is he who, in the name of
scalability and good will, shepherds the weak through the valley of downtime darkness, for he is truly his brother's keeper and the finder of lost vulnerabilities. And I
will strike down upon thee with great pwning vengeance and furious anger those who would attempt to poison and destroy my perimeter. And you will know My
name is the Compliance Lord when I lay My stateful packet filtering vengeance upon thee.

✤ DART, Ceylon, GO,
F#, OPA, Fantom,
Zimbu, X10, Haxe,
Chapel

✤ Django, Pylons,
Mojolicious

✤ CouchDB, Hadoop,
Neo4J, MongoDB,
Cassandra

http://en.wikipedia.org/wiki/Ceylon_(programming_language)
http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/F_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Opa_(programming_language)
http://en.wikipedia.org/wiki/Zimbu
http://en.wikipedia.org/wiki/Haxe
http://en.wikipedia.org/wiki/Chapel_(programming_language)

#RSAC

Developers Say: “CODE…Do You Write It!?”

!5

Say 'Python' again.

Say 'Python' again, I
dare you, I double
dare you...say
‘Python’ one more
time!

#!/usr/bin/python!!
for letter in 'Python': # Could Have Lived This Way!
 print 'Current Letter :', letter

#RSAC

Framing the Problem

u The discipline that is most resistant to change and least
likely to adapt is “Security”

u This resistance is usually excused due to a lack of trust and
a reliance on people because we don’t trust security
automation.

u “Security” continues to rely on a manual supply chain
operated by the “Meat Cloud”

u Trustable automation and an operational model to support it
is needed

!6

#RSAC

The “Enterprise” vs the “Cloud” Models
u Cloud is an operational model
u DevOps represents an operational framework

u Both enjoy their own definitional perversion

u Enterprises are adopting Cloud in various forms; Public/Private/Hybrid, IaaS/
PaaS/SaaS

u The traditional silos and organizational dynamics of enterprises — driven by
arbitrary economic models — are having a rough time with “DevOps”

u Why? Because people are conflating the differences in the operational
models with the need to adapt their frameworks for servicing it

!7

#RSAC

IT Deconstructed

!8

Sprockets & Moving Parts -
Compute, Network, StorageInfrastructure

Glue & Guts -  
IPAM, IAM, BGP, DNS, SSL, PKI &
Abstraction layers

Metastructure

Apps & Widgets - 
Applications & Services

Applistructure

Infostructure Content & Context -  
Data & Information

#RSAC

What This Means To Security

!9

Infrastructure

Metastructure

Applistructure

Infostructure

Network Security 
Host-based Security
Storage Security

Information 
Security

Application  
Security

[S
ec
]D

ev
o
ps

#RSAC

The Challenge In Semantics…
u If we don’t have consistency in standards/formats for

workloads & stack insertion, we’re not going to have
consistency in security

u Inconsistent policies and network topologies make security
service, topology & device-specific

u Fundamentally, we need reusable and programmatic security
design patterns; Controls today are CLI/GUI based

u Few are API-driven or feature capabilities for orchestration,
provisioning as the workloads they protect

!10

#RSAC

…We ought to think about security like this:

Working with VMware vShield REST API in perl. Richard Park, Sourcefire

#RSAC

…or this…

!12

AWS Security : A Practitioner’s Perspective. Jason Chan, Netflix

#RSAC

What’s Missing?
u Instrumentation that is inclusive of security
u Intelligence and context shared between infrastructure and

applistructure layers
u Maturity of “automation mechanics” and frameworks
u Standard interfaces, precise syntactical representation of

elemental security constructs < We need the “EC2 API” of
Security

u An operational security methodology that ensures a common
understanding of outcomes & “DevOps” culture in general

!13

#RSAC

So?

u Regardless of whether you’re an Enterprise or a Cloudyrprise or a Hybridprise,
there are various levels of sophistication and maturity that exist

u There are plenty of Enterprises who have their operational security house in
order and plenty of Cloudyprises who fall over constantly and vicey-versey

u The Operational Model doesn’t dictate the success of the Operational
Framework but the converse is true

u Changing how, where and when security is done requires a different
framework for doing it. And who does it.

u This is [Sec]DevOps.

!14

#RSAC

[Sec]DevOps & The $64,000 Security Question

u What would you do differently — and how — if you took your most
important assets from behind your firewall and processes and plugged
them directly into the Internet?

!
u What if these assets are sprinkled around in your virtualized Data Centers,

multiple Public Cloud IaaS providers, and linked to one or more SaaS
providers — and you need to manage workloads and security…at scale.

!
u Are you still going to use the Meat Cloud?

!15

#RSAC

A Real Scenario
The scenario:

u 24 “data centers,” 4 of them connected via a VPN a public IaaS cloud (Hybrid)
u Massive private WAN with complex routing, DNS and load-balanced

infrastructure and virtualized overlay networking (SDN)
u 1000 distributed firewalls — a combination of physical & virtual
u 10,000 hosts — bare metal and virtualized with 2 hypervisors
u Custom-written orchestration system
u Internally-deployed, self-service “Private Cloud” and integrated Platform-as-a-

Service
u 500 firewall policy changes a week

!16

#RSAC

!17

This is real today. We call it
Software Defined Security

#RSAC#RSAC

Welcome to SecOps/SecDevOps

!18

1

2

3

4

Inject startup script

Pull secure credentials

Register with config
mgmt server

5 Pull
configuration

Completely automated
and consistently and
persistently enforced.

DEMO

How do you do this
without automation?
!
More work, less
effective, less
consistent.

#RSAC#RSAC

Software Defined Security in Action

u Meet SecuritySquirrel, the first warrior in
the Rodent Army (apologies to Netflix).

u The following tools are written by a short,
red-headed analyst with a shorter temper
and a Ruby-for-Dummies book.

u Automated security workflows spanning
products and services.

!21

#RSAC#RSAC

Problem: Identify Unmanaged Servers

!22

1 Scan the network

2 Scan again and again for all the parts you missed

3 Identify all the servers as best you can

4 Pull a config mgmt report

5 Manually compare results

#RSAC#RSAC

The Software Defined Security Way

!23

1. Get list of all servers from
cloud controller (can filter
on tags/OS/etc).

• Single API call

2. Get list of all servers from
Chef

• Single API call

3. Compare in code

DEM
O

#RSAC#RSAC

Problem: Compromised Server Incident Response

!24

1 Detect
Compromise

2
Pull server

information (If you
have it)

3 Quarantine

4 Image

5 Analyze

6 Recover

= Hours!

Each step is manual, and uses a different
set of disconnected tools

#RSAC#RSAC

The Software Defined Security Way

!25

1. Pull metadata

2. Quarantine

3. Swap control to security
team

4. Identify and image all
storage

5. Launch and configure
analysis server

6. Can re-launch clean server
instantly

DEM
O

The Only Difference is
the APIs and Program
Flow

#RSAC#RSAC

A Software Defined Security Rainbow Unicorn

u Automating a secure
vulnerability
assessment involving a
cloud service and two
commercial security
products.

u Open firewall, open
host firewall, trigger
scan, close firewalls.

!27

DEM
O

Our Call to Action…

#RSAC

I, Network Engineer

!29

Kurt Bales, Senior Network Engineer blogger at "www.network-janitor.net"

*Borrowed from Jeremy Schulman, Juniper Networks

s/Network/Security

http://www.network-janitor.net

#RSAC

An Engineer’s Approach:

u Get started "day one" using Python interactive shell
u Do it the way a network engineer thinks and interacts with the

network, not like a Programmer/API
u Do not require knowledge of XML, Junos, NETCONF
u Give me "CLI access" if I get stuck, but no CLI screen-scraping
u Give me access both config and operational data in standard Python

types like dictionary (hash) and list
u Make it Open-Source so I don't have to wait for "The Vendor" to add/

fix things

!30*Borrowed from Jeremy Schulman, Juniper Networks

#RSAC

If Yan Can Cook, You Can Too!

!31

SESSION ID:

Rich Mogull
Analyst and CEO 
Securosis 
@rmogull
rmogull@securosis.com

Dueling Banjos - Cloud vs. Enterprise Security:
Using Automation and (Sec)DevOps NOW

bla bla

Hoff
VP Strategy 
Juniper Networks
@Beaker
choff@juniper.net

http://github.com/securosis/securitysquirrel

mailto:rmogull@securosis.com
mailto:choff@juniper.net
http://github.com/securosis/securitysquirrel

