Archive

Archive for the ‘Active Defense’ Category

The Curious Case Of Continuous and Consistently Contiguous Crypto…

August 8th, 2013 9 comments

Here’s an interesting resurgence of a security architecture and an operational deployment model that is making a comeback:

Requiring VPN tunneled and MITM’d access to any resource, internal or external, from any source internal or external.

While mobile devices (laptops, phones and tablets) are often deployed with client or client-less VPN endpoint solutions that enable them to move outside the corporate boundary to access internal resources, there’s a marked uptake in the requirement to require that all traffic from all sources utilizing VPNs (SSL/TLS, IPsec or both) to terminate ALL sessions regardless of ownership or location of either the endpoint or the resource being accessed.

Put more simply: require VPN for (id)entity authentication, access control, and confidentiality and then MITM all the things to transparently or forcibly fork to security infrastructure.

Why?

The reasons are pretty easy to understand.  Here are just a few of them:

  1. The user experience shouldn’t change regardless of the access modality or location of the endpoint consumer; the notion of who, what, where, when, how, and why matter, but the user shouldn’t have to care
  2. Whether inside or outside, the notion of split tunneling on a per-service/per-application basis means that we need visibility to understand and correlate traffic patterns and usage
  3. Because the majority of traffic is encrypted (usually via SSL,) security infrastructure needs the capability to inspect traffic (selectively) using a coverage model that is practical and can give a first-step view of activity
  4. Information exfiltration (legitimate and otherwise) is a problem.

…so how are folks approaching this?

Easy.  They simply require that all sessions terminate on a set of  [read: clustered & scaleable] VPN gateways, selectively decrypt based on policy, forward (in serial or parallel) to any number of security apparatus, and in some/many cases, re-encrypt sessions and send them on their way.

We’ve been doing this “forever” with the “outside-in” model (remote access to internal resources,) but the notion that folks are starting to do this ubiquitously on internal networks is the nuance.  AVC (application visibility and control) is the inside-out component (usually using transparent forward proxies with trusted PAC files on endpoints) with remote access and/or reverse proxies like WAFs and/or ADCs as the outside-in use case.

These two ops models were generally viewed and managed as separate problems.  Now thanks to Cloud, Mobility, virtualization and BYOE (bring your own everything) as well as the more skilled and determined set of adversaries, we’re seeing a convergence of the two.  To make the “inside-out” and “outside-in” more interesting, what we’re really talking about here is extending the use case to include “inside-inside” if you catch my drift.

Merging the use case approach at a fundamental architecture level can be useful; this methodology works regardless of source or destination.  It does require all sorts of incidental changes to things like IdM, AAA, certificate management, etc. but it’s one way that folks are trying to centralize the distributed — if you get what I mean.

I may draw a picture to illustrate what I mean, but do let me know if either you’re doing this (many of the largest customers I know are) if it makes sense.

/Hoff

P.S. Remember back in the 80′s/90′s when 3Com bundled NIC cards with integrated IPSec VPN capability?  Yeah, that.

Enhanced by Zemanta

Incomplete Thought: The Psychology Of Red Teaming Failure – Do Not Pass Go…

August 6th, 2013 14 comments
team fortress red team

team fortress red team (Photo credit: gtrwndr87)

I could probably just ask this of some of my friends — many of whom are the best in the business when it comes to Red Teaming/Pen Testing, but I thought it would be an interesting little dialog here, in the open:

When a Red Team is engaged by an entity to perform a legally-authorized pentest (physical or electronic) with an explicit “get out of jail free card,” does that change the tactics, strategy and risk appetite of the team were they not to have that parachute?

Specifically, does the team dial-up or dial-down the aggressiveness of the approach and execution KNOWING that they won’t be prosecuted, go to jail, etc.?

Blackhats and criminals operating outside this envelope don’t have the luxury of counting on a gilded escape should failure occur and thus the risk/reward mapping *might* be quite different.

To that point, I wonder what the gap is between an authorized Red Team action versus those that have everything to lose?  What say ye?

/Hoff

Enhanced by Zemanta

Incomplete Thought: In-Line Security Devices & the Fallacies Of Block Mode

June 28th, 2013 16 comments

blockadeThe results of a long-running series of extremely scientific studies has produced a Metric Crapload™ of anecdata.

Namely, hundreds of detailed discussions (read: lots of booze and whining) over the last 5 years has resulted in the following:

Most in-line security appliances (excluding firewalls) with the ability to actively dispose of traffic — services such as IPS, WAF, Anti-malware — are deployed in “monitor” or “learning” mode are rarely, if ever, enabled with automated blocking.  In essence, they are deployed as detective versus preventative security services.

I have many reasons compiled for this.

I am interested in hearing whether you agree/disagree and your reasons for such.

/Hoff

Enhanced by Zemanta

Six Degress Of Desperation: When Defense Becomes Offense…

July 15th, 2012 No comments
English: Defensive and offensive lines in Amer...

English: Defensive and offensive lines in American football (Photo credit: Wikipedia)

One cannot swing a dead cat without bumping into at least one expose in the mainstream media regarding how various nation states are engaged in what is described as “Cyberwar.”

The obligatory shots of darkened rooms filled with pimply-faced spooky characters basking in the green glow of command line sessions furiously typing are dosed with trademark interstitial fade-ins featuring the masks of Anonymous set amongst a backdrop of shots of smoky Syrian streets during the uprising,  power grids and nuclear power plants in lockdown replete with alarms and flashing lights accompanied by plunging stock-ticker animations laid over the trademark icons of financial trading floors.

Terms like Stuxnet, Zeus, and Flame have emerged from the obscure .DAT files of AV research labs and now occupy a prominent spot in the lexicon of popular culture…right along side the word “Hacker,” which now almost certainly brings with it only the negative connotation it has been (re)designed to impart.

In all of this “Cyberwar” we hear that the U.S. defense complex is woefully unprepared to deal with the sophistication, volume and severity of the attacks we are under on a daily basis.  Further, statistics from the Private Sector suggest that adversaries are becoming more aggressive, motivated, innovative, advanced,  and successful in their ability to attack what is basically described as basically undefended — nee’ undefendable — assets.

In all of this talk of “Cyberwar,” we were led to believe that the U.S. Government — despite hostile acts of “cyberaggression” from “enemies” foreign and domestic — never engaged in pre-emptive acts of Cyberwar.  We were led to believe that despite escalating cases of documented incursions across our critical infrastructure (Aurora, Titan Rain, etc.,) that our response was reactionary, limited in scope and reach and almost purely detective/forensic in nature.

It’s pretty clear that was a farce.

However, what’s interesting — besides the amazing geopolitical, cultural, socio-economic, sovereign,  financial and diplomatic issues that war of any sort brings — including “cyberwar” — is that even in the Private Sector, we’re still led to believe that we’re both unable, unwilling or forbidden to do anything but passively respond to attack.

There are some very good reasons for that argument, and some which need further debate.

Advanced adversaries are often innovative and unconstrained in their attack methodologies yet defenders remain firmly rooted in the classical OODA-fueled loops of the past where the A, “act,” generally includes some convoluted mixture of detection, incident response and cleanup…which is often followed up with a second dose when the next attack occurs.

As such, “Defenders” need better definitions of what “defense” means and how a silent discard from a firewall, a TCP RST from an IPS or a blip from Bro is simply not enough.  What I’m talking about here is what defensive linemen look to do when squared up across from their offensive linemen opponents — not to just hold the line to prevent further down-field penetration, but to sack the quarterback or better yet, cause a fumble or error and intercept a pass to culminate in running one in for points to their advantage.

That’s a big difference between holding till fourth down and hoping the offense can manage to not suffer the same fate from the opposition.

That implies there’s a difference between “winning” and “not losing,” with arbitrary values of the latter.

Put simply, it means we should employ methods that make it more and more difficult, costly, timely and non-automated for the attacker to carry out his/her mission…[more] active defense.

I’ve written about this before in 2009 “Incomplete Thought: Offensive Computing – The Empire Strikes Back” wherein I asked people’s opinion on both their response to and definition of “offensive security.”  This was a poor term…so I was delighted when I found my buddy Rich Mogull had taken the time to clarify vocabulary around this issue in his blog titled: “Thoughts on Active Defense, Intrusion Deception, and Counterstrikes.

Rich wrote:

…Here are some possible definitions we can work with:

  • Active defense: Altering your environment and system responses dynamically based on the activity of potential attackers, to both frustrate attacks and more definitively identify actual attacks. Try to tie up the attacker and gain more information on them without engaging in offensive attacks yourself. A rudimentary example is throwing up an extra verification page when someone tries to leave potential blog spam, all the way up to tools like Mykonos that deliberately screw with attackers to waste their time and reduce potential false positives.
  • Intrusion deception: Pollute your environment with false information designed to frustrate attackers. You can also instrument these systems/datum to identify attacks. DataSoft Nova is an example of this. Active defense engages with attackers, while intrusion deception can also be more passive.
  • Honeypots & tripwires: Purely passive (and static) tools with false information designed to entice and identify an attacker.
  • Counterstrike: Attack the attacker by engaging in offensive activity that extends beyond your perimeter.

These aren’t exclusive – Mykonos also uses intrusion deception, while Nova can also use active defense. The core idea is to leave things for attackers to touch, and instrument them so you can identify the intruders. Except for counterattacks, which move outside your perimeter and are legally risky.

I think that we’re seeing the re-emergence of technology that wasn’t ready for primetime now become more prominent in consideration when folks refresh their toolchests looking for answers to problems that “passive response” offers.  It’s important to understand that tools like these — in isolation — won’t solve many complex attacks, nor are they a silver bullet, but understanding that we’re not limited to cleanup is important.

The language of “active defense,” like Rich’s above, is being spoken more and more.

Traditional networking and security companies such as Juniper* are acquiring upstarts like Mykonos Software in this space.  Mykonos’ mission is to “…change the economics of hacking…by making the attack surface variable and inserting deceptive detection points into the web application…mak[ing] hacking a website more time consuming, tedious and costly to an attacker. Because the web application is no longer passive, it also makes attacks more difficult.”

VC’s like Kleiner Perkins are funding companies whose operating premise is a more active “response” such as the in-stealth company “Shape Security” that expects to “…change the web security paradigm by shifting costs from defenders to hackers.”

Or, as Rich defined above, the notion of “counterstrike” outside one’s “perimeter” is beginning to garner open discussion now that we’ve seen what’s possible in the wild.

In fact, check out the abstract at Defcon 20 from Shawn Henry of newly-unstealthed company “Crowdstrike,” titled “Changing the Security Paradigm: Taking Back Your Network and Bringing Pain to the Adversary:

The threat to our networks is increasing at an unprecedented rate. The hostile environment we operate in has rendered traditional security strategies obsolete. Adversary advances require changes in the way we operate, and “offense” changes the game.

Shawn Henry Prior to joining CrowdStrike, Henry was with the FBI for 24 years, most recently as Executive Assistant Director, where he was responsible for all FBI criminal investigations, cyber investigations, and international operations worldwide.

If you look at Mr. Henry’s credentials, it’s clear where the motivation and customer base are likely to flow.

Without turning this little highlight into a major opus — because when discussing this topic it’s quite easy to do so given the definition and implications of “active defense,”– I hope this has scratched an itch and you’ll spend more time investigating this fascinating topic.

I’m convinced we will see more and more as the cybersword rattling continues.

Have you investigated technology solutions that offer more “active defense?”

/Hoff

* Full disclosure: I work for Juniper Networks who recently acquired Mykonos Software mentioned above.  I hold a position in, and enjoy a salary from, Juniper Networks, Inc. ;)

Enhanced by Zemanta